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Abstract1

The Functional BIST approach is a rather new BIST
technique based on exploiting embedded system
functionality to generate deterministic test patterns during
BIST. The approach takes advantages of two well-known
testing techniques, the arithmetic BIST approach and the
reseeding method.

The main contribution of the present paper consists in
formulating the problem of an optimal reseeding
computation as an instance of the set covering problem.
The proposed approach guarantees high flexibility, is
applicable to different functional modules, and, in general,
provides a more efficient test set encoding then previous
techniques. In addition, the approach shorts the
computation time and allows to better exploiting the trade-
off between area overhead and global test length as well
as to deal with larger circuits.

1. Introduction
Recently a rather new BIST technique have been

proposed, aiming at covering not random testable faults
via deterministic test patterns generated through the
available system modules. The basic idea of the approach
can be summarized as follows: let two modules Mi and Mj
be given, both part of the system mission logic and
functionally connected. During testing, control Mi in such
a way that its outputs are suitable test patterns for module
Mj. Mi is typically a sequential circuit, and Mj is a
combinational or pipelined unit.
The approach takes advantages of two well-known

testing techniques, the arithmetic BIST approach [1][2]
and the reseeding method [3][4]. From the former it
derives the idea of exploiting the available system
functionality for testing the system itself, and from the

1 This work was partially supported by Deutscher Akademischer
Austauschdienst (DAAD) and by the Conferenza dei Rettori delle
Università Italiane (CRUI), under the Vigoni Project 1999-2000.

latter the idea of adequately initialize (seed) the test
pattern generator unit to generate deterministic test sets.
The approach has been named Functional BIST

[5][6][7][8], since it is not restricted to any specific
modules Mi but it can work with any type of functions.
The target application scenario is testing the actual
System-On-Chips (SoCs), which include a variety of
functional units, library modules (e.g., ALU, MAC, LFSR,
etc.), as well as custom blocks. These modules usually
form a strongly connected network, in which each unit is
functionally linked to many other system modules either
by bus- or by multiplexer-oriented interconnections.
Because of the novelty of the approach, so far a few

papers addressed the problem of computing the
appropriate initialization values (reseedings) for a given
unit Mi used as test pattern generator (TPG). [5] proposes a
simulation-based and an analytic method to compute the
initialization values for an adder-based TPG. [6] still deals
with adder based accumulator structures, and is able to
compute seeds so that the resulting test sequences obtain
complete fault coverage for all the ISCA’S85 circuits and
the combinational parts of the ISCAS’89 circuits [9][10].
[7][8] present a universal algorithm called GATSBY

(Genetic Algorithm based Test Synthesis tool for BIST
applications), to compute the initialization values for a
generic module used as TPG. Different test pattern
generators were evaluated taking into account the
parameters test length, area overhead, and fault coverage.
Experiments show that GATSBY was able to outperform
results presented into the literature and customized on
specialized cases. However, since the GATSBY
computation process strongly relies on simulation, the
approach is not applicable to large circuits.
The goal of the present paper is to propose an effective

method for reseeding computation. The approach
guarantees the same flexibility of GATSBY but provides
better reseeding solutions reducing the area overhead, and
allows dealing with larger Unit Under Tests. The key point
of the presented approach consists in formalizing a very
innovative problem by resorting to the set covering
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techniques, which are well known in the computer design
area and have been widely used in the past.
Set covering techniques have many applications in

computer design, such as two-levels logic minimization,
two-levels Boolean relation minimization, state
minimization, exact encoding and DAG covering
[11][12][13], and for optimal encoding of microprocessor
instructions [14]. Moreover, they were exploited for test
compaction in the testing field [15].
In the present paper, starting from an initial reseeding

solution, a minimal one is computed by resorting to typical
set covering techniques, based on essentiality and
dominance [17], together with LINGO [16], a well-known
and very efficient tool for solving linear programming
problems. The present paper is organized as follows:
Section 2 briefly overviews the basic concepts of
Functional BIST approach; Section 3 details the
formalization through the set covering model and
describes the computation algorithm. Section 4 reports the
experimental results, and Section 5 eventually draws some
conclusions.

2. The Functional BIST: a summary
This section briefly summarizes the functional BIST

approach and provides concepts and notations needed
below. A deeper description of the approach is out of the
scope is this paper, but the reader may refer to [7] and [8]
for more details.
The aim of the approach is testing a given system

through the functionalities available into the system itself.
The modules used as a the Test Pattern Generators (TPGs)
are generally sequential circuits, having input and internal
state register partially or fully accessible, either via
parallel load or in full-scan mode. To generate the
appropriate test sequence, the TPG is first seeded by
setting its state register and its inputs register to two
initialization values, respectively δ and σ. Then, the TPG
is let evolve for τ clock cycles. During the TPG evolution,
the TPG input register remains σ, but the content of the
state register is potentially updated at each clock cycle.
The Test Set (TS) computed by the TPG is the sequence of
τ patterns which appears on the TPG outputs, one pattern
pj at each clock cycle tj, 0 ≤ j < τ: TS={p0, p2, ...pτ-1}. The
test set TS is characterized through the intrinsic
functionality of the TPG itself as well as the triplet of
values δ, σ, and τ employed to control the TPG evolution.
Two elements mainly contribute in defining the quality of
the test set: the fault coverage (FC%) and the test length
(τ).
Experiments in [7] and in [8] showed that the complete

fault coverage is not always achieved through a single
triplet when dealing with large Unit Under Tests (UUTs).
In this case, multiple TPG reseedings are required:
periodically the TPG evolution has to be stopped and

restarted with a new triplet, until the target fault coverage
is reached.
A reseeding solution is a set of K triplets ∪0 ≤ i <K (δ, σ,

τ)i, which are sequentially applied to the TPG. Each triplet
drives the TPG evolution generating a test set TSi which
detects a percentage ∆FC%i of the UUT faults not covered
by the other triplets. The overall test set TS is therefore the
union of the test sets TSi generated by each triplet: TS=
TS0∪ TS1∪ TS2∪ ... TSK-1; it is characterized by a global
test length T=Σ 0 ≤ i < K τi and the fault coverage FC% = Σ 0
≤ i < K∆FC%i.
An optimal reseeding solution can be computed by

trading-off the number of reseedings vs. area overhead and
test length. A low number of reseedings allows minimizing
the area needed to store the triplets (e.g., in a ROM), but
usually a larger test length is necessary and the 100% of
testable fault coverage is not always guaranteed. On the
other hand, large number of reseedings guarantees the
target fault coverage, with a shorter test length, but it
implies more area overhead.

3. The Set Covering Model
The present paper addresses the computation of an

optimal reseeding solution, which minimizes the number
of reseedings. This value in fact strongly impacts on the
applicability of the approach since it affects the area
overhead.
Let F={f1, f2, f3,….} be the target list of stuck-at faults

of the combinational circuit to be tested. Our purpose is to
compute a minimal set of triplets ∪(δ, σ, τ)i such as the
resulting test set TS= ∪TSi guarantees the detection of all
the faults belonging to F. This problem can be formalized
as an instance of the set covering problem. In the
following, for sake of readiness, the triplet of values (δ, σ,
τ)i will be denoted as tripleti.
Let us start with a initial reseeding of M triplets

T={triplet0, triplet1, …, tripletM-1}, built up in order to
guarantee the detection of all the target faults F={f1, f2,
f3,….}. By construction F= ∪tripleti ∈T F(tripleti), being
F(tripleti) = {f1/i, f 2/i, f3/i,….} the subset of faults detected
by the test set TSi, generated by tripleti. The object of the
research becomes find a set N of triplets, N ⊆ T, such that
∪tripleti ∈NF(tripleti) = F and N has minimum cardinality.
Definition: A set N of triplets is a minimal solution iff
none its triplet can be removed without affecting the
detection of F.
Therefore, each tripleti ∈ N is necessary to detect at least
one fault fk∈F, which is not covered by any other triplet of
N.
To map this problem as an instance of the set covering

problem, let define a matrix, named in this context
Detection Matrix, having size (#Triplets∈N)×(#Faults∈F).
Each row of the matrix corresponds to a tripleti∈T and
each column to a fault fj ∈F. Each cell dij of the matrix is
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set to ‘1’ if at least one pattern of the test set TSi,
generated by tripleti, detects the fault fj; it is fixed to
‘0’,otherwise.
Further, define a vector x of M Boolean variables, such

that xj provided by tripletj is selected for inclusion in N.
Our goal is therefore to solve the following integer
optimization problem:
minimize Σj xj
constraints Detection Matrix • x ≥ 1, x∈{0, 1}M

which can also be viewed as an instance of the set
covering problem.
The quality of the final solution N strongly depends on

both the goodness of the initial solution T as well as on the
adopted set covering algorithm. In the following three
Sections, these aspects will be analyzed in detail.

3.1. Building up the Detection Matrix
The initial reseeding T is generated by resorting to the

test set ATPGTS provided by a commercial gate-level
ATPG tool, which guarantees complete covering of F. The
cardinality of T is fixed equal to the test length of
ATPGTS.
Being ATPGTS a sequence of M patterns pi, ATPGTS

={p0, p2,.., pM-1}, for each tripletj of T the value δ is set to
one pattern pj, and the value σ is randomly selected. The
number τ of clock cycles for triplet evolution is
experimentally tuned and applied to all the triplets of T.
Fixing τ=’0’, the test set TS provided by the reseeding
corresponds to the ATPG test set ATPGTS.

3.2. Detection Matrix Reduction
First, the Detection Matrix is simplified using

essentiality and dominance methods [17]. The two
techniques are iteratively applied until the matrix cannot
be reduced any more.
Definition: tripleti is essential or necessary iff at least one
fault fj∈F is detected only by one of the pattern belonging
to TSi.
Necessary triplets must be included into the final

solution N. The Detection Matrix is therefore simplified
deleting all the rows corresponding to the necessary
triplets, and all the columns corresponding to the faults
detected by them (F(tripleti)).
Definition: tripletj is dominated by tripletk iff F(tripletj) ⊆
F(tripletK), i.e., the set TSk detects the faults covered by TSj
plus possibly some additional others.
Dominated triplets will not be included into the final

reseeding solution N and therefore the corresponding rows
are removed from the Detection Matrix.

3.3. Computing an Optimal Reseeding Solution
If the Detection Matrix is empty at the end of the

reduction process, the final reseeding solution N will only
contain necessary triplets. Otherwise the reduced matrix

must be further analyzed by resorting to alternative
solving algorithms. Depending on the size of the matrix,
either exact approaches or local research and meta-
heuristic techniques are applied. Experiments reported in
Section 4 show that on this kind of problems the reduction
process is highly effective, and the size of the reduced
matrix allow to deal it with an exact algorithm. In
particular, among the algorithms available into the
literature, we decided to adopt the linear programming
software package LINGO, an effective commercial tool
that addresses the exact solution of combinational
optimization problems [16].

4. Experimental results
Figure 1 sketches the overall computation flow of the

proposed set covering based method. First, the Initial
Reseeding Builder provides the starting reseeding solution
(T) and computes the Detection Matrix. It receives as an
input the behavioral description of the TPG, together with
the ATPGTS deterministic test set and the fault list F, both
provided by a gate-level ATPG. Then, the Matrix Reducer
simplifies the Detection Matrix and computes the set of
necessary triplets. Finally, the software package LINGO
[16] post processes the matrix, extracting a minimal subset
of triplets. The computed reseeding solution (N) is
therefore the union of the necessary triplets and the
minimal subset of triplets.

Target FaultTarget Fault
List (List (FF ))

UUTUUT
netlistnetlist

Deterministic TestDeterministic Test
Set (Set (ATPGTSATPGTS ))

TPGTPG
functionalityfunctionality

NecessaryNecessary
TripletsTriplets

Minimal subsetMinimal subset
of Tripletsof Triplets

ReducedReduced
DetetctionDetetction
MatrixMatrix

GateGate-- levellevel
ATPGATPG

LINGOLINGOMatrixMatrix
ReducerReducer

DetectionDetection
MatrixMatrix

StartingStarting
Reseeding (Reseeding (TT ))

Initial ReseedingInitial Reseeding
BuilderBuilder

Figure 1: The reseeding computation flow

To run the experiments, in the present paper both the
Initial Reseeding Builder and Matrix Reducer have been
implemented in ANSI C. The target fault list (F) and the
ATPGTS are instead computed by resorting to the gate-
level ATPG TestGen [18]. The tool is also employed to
support the computation of the initial reseeding solution
(T) and the Detection Matrix. The Initial Reseeding
Builder builds up a tripleti for each pattern pi belonging to
ATPGTS and computes the corresponding test set TSi,
seeding the TPG by tripleti and let it evolving for τi clock
cycles. The fault coverage ∆FCi for TSi is gathered fault
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simulating TSi on F through the TestGen fault simulator.
To build the matrix, the value τi is experimentally tuned
and fixed equal for all the triplets of T.
As TPGs, we focus on three accumulator-based units

including arithmetic functions such as adder, multiplier
and subtracter, which are quite common in the actual
SoCs. As UUT we consider the ISCAS’85 and the full-
scan version of ISCAS’89 benchmark circuits [9][10],
which are not random testable by 10k patterns. Final
reseeding solutions are collected in Table 1, whereas Table
2 and Figure 2 allow a deeper analysis of the results.
Experiments were run on a Sun SparcStation 5/110 with
64Megabytes of RAM.
Table 1 reports the cardinality of the reseeding solution

(#Triplets) and the global test length (Test Length) for each
considered TPG. Moreover Table 1 compares the actual
results and the GATSBY solutions [8]. On all the circuits
(except s838) the set covering based approach sensibly
reduces the number of reseedings with respect to
GATSBY: the improvement ranks from –2 to –25 triplets
and interests all the three considered TPGs. Therefore,
without loosing generality, the approach proposed in this
paper provides solution significantly less costly in terms of
area overhead to store the triplets. No comparison is
available for s13207 and s15850 since the two circuits
were too large to be dealt with by GATSBY.
One of the advantages of the set covering based

approach rely on the fact that it shorts the computation
time, allowing to better exploit the trade-off between the
number of reseedings and the test length, possibly dealing
with larger test sequences. W.r.t. GATSBY, the number of
fault simulations is reduced and limited to the construction
of the Detection Matrix.
In the case of multiple reseedings, the global test length

reported in Table 1 is computed deleting from each test set
TSi the last subsequence of patterns not contributing to the
fault coverage ∆FCi. For each triplet therefore we assume
to store both the seeding values δ and σ, and the actual
number of clock cycles for the evolution. The area
overhead can be further reduced let evolving all the
triplets for the same interval of time. In this case the value
τ must be the largest number of clock cycles among the
ones required by each triplet of the reseeding solution.
Figure 2 focuses on the trade-off between the number

of reseedings and the test length, in the case of the circuit
s1238 and considering as TPG an adder based
accumulator. Starting from a test length of 5,427 and
progressively increasing this value to 15,551, the number
of triplets decreases from 11 to 2.
Table 2 focuses on the complexity of the problem, and

on the characteristics of the reseeding solutions. The first
column of Table 2 reports the size of the initial Detection
Matrix, expressed as #Triplets×#Faults. By construction
#Triplets is the test length of the TestGen test set. The
remaining columns show, for each TPG, the impact of the

reduction techniques and the contribution of LINGO.
Experiments show that the reduction is quite effective on
this kind of problems, allowing to significantly prune the
Detection Matrix and providing a matrix that can be
processed by LINGO. On some examples (c499, c880,
c1355, c1908, s820, s838, s953, s1423, s15850) the
reseeding solution only contains necessary triplets, being
the matrix empty after reduction. On the others, the
reseeding includes either no necessary triplets (s420, s641,
s1238, s5378, s9234, s13207) or both necessary triplets
and triplets computed by LINGO (c7552, s9234).

0
2,000
4,000
6,000
8,000
10,000
12,000
14,000
16,000
18,000

11 7 5 4 3 2

s1238 as UUT
adder as TPG

#Trip lets

Test Length

Figure 2: Trade-off Reseedings vs.Test Length

5. Conclusions
The present paper works in the area of the Functional

BIST and proposes an effective method, based on set
covering techniques, for optimal reseeding computation.
Experiments show that the approach allows conjugating
effectiveness and high flexibility. On one hand, it is not
customized on specific test pattern generators. On the
other hand, it allows exploiting the trade-off between area
overhead and global test length, and it provides reseeding
solutions with minimum area overhead.
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Set Covering Set Covering -GATSBY
Adder Multiplier Subtracter Adder Multiplier Subtracter

Circuit #
Triplets

Test
Length

#
Triplets

Test
Length

#
Triplets

Test
Length

∆∆∆∆
#Triplets

∆∆∆∆Test
Length

∆∆∆∆
#Triplets

∆∆∆∆Test
Length

∆∆∆∆
#Triplets

∆∆∆∆Test
Length

c499 1 650 1 690 1 484 0 282 0 336 0 64
c880 1 3935 1 3,122 1 3,686 0 1,831 0 1,156 0 1563
c1355 1 1816 1 1,796 1 1,708 0 665 0 555 0 531
c1908 1 3845 1 3,807 1 3,929 0 72 0 459 0 288
c2670 18 168,072 21 224,048 19 221,970 -15 157,893 -15 215,738 -11 211,569
c7552 38 286,725 38 286,200 39 297,579 -26 236,725 -32 246,200 -29 247,579
s420 4 111,899 5 106,132 5 136,769 -3 106,389 -5 96,421 -5 127,918
s641 3 69,473 4 78,649 4 97,005 -2 64,998 -2 75,919 -3 94,340
s820 1 7,075 1 13,410 1 8,219 -2 1,764 -2 8,009 -2 734
s838 70 833,217 67 769,309 72 897,366 59 826,523 -25 758,321 42 880,174
s953 1 16,855 1 19,053 1 10,910 -2 8,984 -2 13,250 -3 4,338
s1238 2 15,551 2 26,407 2 15,704 -2 8,195 -4 17,336 -5 7,172
s1423 1 6,916 1 13,954 1 13,707 -2 3,816 -3 9,480 -2 10,268
s5378 3 22,848 3 23,476 3 23,636 -4 12,848 -6 11,476 -3 12,636
s9234 46 182,100 39 224,770 36 210969 -4 132,100 -16 164,770 -17 155,969
s13207 15 36,102 18 42,130 17 40,610 - - - - - -
s15850 104 208,236 92 362,632 83 328,100 - - - - - -

Table 1: Reseeding solution

Adder Multiplier Subtracter
Reduction Reduction Reduction

Circuit Initial
Detection
Matrix

Reduced
Detection
Matrix

Necessary
Triplets

LINGO Reduced
Detection
Matrix

Necessary
Triplets

LINGO Reduced
Detection
Matrix

Necessary
Triplets

LINGO

c499 74X692 0X0 1 - 0X0 1 - 0X0 1 -
c880 91X850 0X0 1 - 0X0 1 - 0X0 1 -
c1355 118X1,508 0X0 1 - 0X0 1 - 0X0 1 -
c1908 184X1,816 0X0 1 - 0X0 1 - 0X0 1 -
c2670 163X2,635 103X307 0 18 91X196 0 21 106X344 1 18
c7552 326X7,396 28X32 29 9 0X0 38 - 0X0 39 -
s420 110X421 98X125 0 4 103X97 0 4 93X231 0 5
s641 92X463 14X10 0 3 11X10 0 4 12X112 0 4
s820 176X806 0X0 1 - 0X0 1 - 0X0 1 -
s838 215X865 0X0 70 - 0X0 67 - 0X0 72 -
s953 114X995 0X0 1 - 0X0 1 - 0X0 0 2
s1238 236X1,311 34X239 0 2 49X329 0 2 185X134 0 2
s1423 93X1,391 0X0 1 - 0X0 1 - 0X0 1 -
s5378 354X4,195 354X609 0 3 354X718 0 3 354X260 0 3
s9234 573X6,613 512X308 11 35 476X226 12 27 567X432 5 31
s13207 623X8,991 621X3,353 0 15 623X3,520 0 18 623X4,063 0 17
s15850 626X10,729 0X0 104 - 0X0 92 - 0X0 83 -

Table 2: Set Covering algorithm
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